

MultiObjective Optimization in Commercial Vehicle Cooling Layout

Using Genetic Algorithms to Improve Engine Cooling Performance

> Nader Fateh Esteco North America

Agenda

- Optimization Software modeFRONTIER
- Optimization single- and multi-objective
- Genetic Algorithms
- Test Case
- TRUCK Model

Software Overview

modeFRONTIER is a **m**ulti-objective **o**ptimization and **d**esign **e**nvironment, featuring:

- Process Integration (easily coupled to almost any CAE tool)
- Complete Collection of Algorithms for:
 - Design of Experiments
 - Robust Design
 - State of the art Optimization (Single- and Multiobjective)
 - Response Surface Methods
 - Data Modelling
 - Data Mining & Statistics
 - Decision Support Methods
- Java Source Enables Portability: Unix and Windows
- Network Operation (Homogeneous and Heterogeneous)

Optimization

Single-objective vs Multi-objective

SO	MO
Typically use gradients to maximize (or minimize) a single objective function	Allows multiple objectives
Continuous Variables	Discrete variables (including "Catalog Data")
May converge to local optimum	Finds global optimum
Produces single optimum point	Produces Pareto Frontier, or Trade-Off Curve
Computationally more efficient	Requires more data points

Pareto Frontier (Trade-Off Curve)

Fuel Consumption

Genetic Algorithms

These mimic natural evolution, where a biological population evolves over generations to adapt to an environment through processes of selection, crossover ("reproduction") and mutation of genes.

Coupling KULI with modeFRONTIER

KULI 5.2

Coupling modeFRONTIER and KULI

- **KULI** can be run through Excel, using VB macros and COM objects
- **modeFRONTIER** has a direct interface to Excel, so that it can directly enter the input parameters into the Excel file, run macros, and extract the output data
- Not all variables can be modified through the COM objects - modeFRONTIER sets these by modifying KULI's .scs file directly

Coupling modeFRONTIER and KULI through Excel

- Simple Example:
 - Simple system with radiator and fan
 - 3 variables: fan diameter, radiator width and radiator height
 - Objective: minimize radiator entry temperature
 - As we only have one objective, we use a gradient-based algorithm (Simplex)
 - Clearly, the program should converge to a system where all 3 variables take their maximum values

KULI Inner Circuit

Image: System generation [Fan-Rad-Opt.scs]* File Library Insert Qutput Graphics mode Extras Windows / Toolbars Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation Image: System generation <th>s Help <u>第一 ▲ 第 8 ▲ Ⅲ Ⅲ ▲ 壬 № @ Ţ ⊗ ● ● ● ■ 5 ½</u> ዊ q ¹¹ Ҽ № ┶ ⊨ ≍ ⊨ ☆ ☆ ☆ 급 □ ፬ 대 면 명 ☞ <mark> 않 # ⊷ に Ρ Ⅲ</mark> Ե ႄ ႄ ႄ Ε ႄ ♡ Ⅲ ≓ 군 ♡ ₽ 0 ₽</th> <th>_ B ×</th>	s Help <u>第一 ▲ 第 8 ▲ Ⅲ Ⅲ ▲ 壬 № @ Ţ ⊗ ● ● ● ■ 5 ½</u> ዊ q ¹¹ Ҽ № ┶ ⊨ ≍ ⊨ ☆ ☆ ☆ 급 □ ፬ 대 면 명 ☞ <mark> 않 # ⊷ に Ρ Ⅲ</mark> Ե ႄ ႄ ႄ Ε ႄ ♡ Ⅲ ≓ 군 ♡ ₽ 0 ₽	_ B ×
Comercial data Control of the simulation of the	1.Water circuit	
COMDiame	ter SP SP SP SP SP SP SP SP SP SP SP SP SP	

157

KULI - Excel File

	licrosoft Excel - <u>F</u> ile <u>E</u> dit <u>V</u> iew	Fan-Rad-O Insert Fo	p t.xls ormat <u>T</u> ook	ls <u>D</u> ata <u>W</u> inde	ow <u>H</u> elp A	do <u>b</u> e PDF					Туре а	a question for I	>	(
	🛎 🖬 🔒 🔁 🧉	3 🖪 💖 🕺	• 🖻 🛍 • <	🖉 KA + CH + (€ Σ • 2 ↓ 2	at 100 43	100% -	<u>?</u>) _ Arial	/ <u>U</u> ≡ ≡ ≡ ⊡ \$	%, *₀0 ₊00 €≣ €≣	🗉 • 🕭 •	<u>A</u> • .		
	ta ta 2 °G ta		Reply w	vith <u>C</u> hanges E	nd Review	•								
1 TA	E 🐁 🗸	-	f.											
	A	В	C	D	E	F	G	Н		I	J	K	L	E
1	Example Fan	Radiator (Op <mark>timizatio</mark>	on									1	
2	Ambient	1						Location of KULI File:						
3	Temperature °C	20			-		Path:	C:\Work\Kuli\NF-Fan-Rad-Opt	\leq	Location	n of k		File to	he run
4	Relative Humidity %	50					File:	Fan-Rad-Opt.scs	-			XULI		
5				the second						_				
6	Fan Diameter	Radiator Width	Radiator Height	Radiator Entry Temp IM °C										
8	600	600	800											
9 10 11 12 13 14								Name of	f KULI F	ile to	be rui	n		
15 16 17					Output Value: This will be									
18					calcu	lated	l by I	XULI and fed to						
19 20 21					modeFRONTIER									
21 Inoucle Rotrier 22 23 24 24 25 Input Values: These will be set by modeFRONTIER 29 30														
Read	ły													

KULI - Excel VB Macro

```
Sub KULIIF()
   Dim calcOK As Boolean
   Dim folder
               As String
   Dim fileKULI As String
   Dim Temp
'Getrennte Eingabe von Ordner und filename
   folder = Cells(3, 8)
   If Right(folder, 1) = "\" Or Right(folder, 1) = "/" Then folder = Left$(folder, Len(folder) - 1)
   fileKULI = folder & "\" & Cells(4, 8)
   If Dir(fileKULI, vbNormal) = "" Then ' File exists ?
     MsgBox "File not found", , fileKULI ' no - Error
     Exit Sub
                                                          The name used in the macro
   End If
                                                            is the same as that in the
   'set a new KULI-controller
                                                                   COM objects
   Set KULI = New KuliAnalysisCtr2
   'change directory name to your settings
   KULT.KuliFileName = fileKULI
   'initialize the cooling system
   calcOK = KULI.Initialize()
   calcOK = KULI.SetCOMValueByIN("Diameter", Cells(8, 1))
   calcOK = KULI.SetCOMValueByID("Width", Cells(8, 2))
   calcOK = KULI.SetCOMValueByID("Height", Cells(8, 3))
   'KULI calculates the values
   KULI.SimulateOperatingPoint (1)
   Cells(8, 4) = KULI.GetCOMValueByID("EntryTempIM")
   'End KULI-analysis
   KULI.CleanUp
   Set KULI = Nothing
```

))/2

modeFRONTIER Process Flow

OK Preview Cancel Help

EndOK7

EntryTemp

Process Output Connector

Data Output Connector

Condition

Cell Address

×

D Edit Workbook

Interactive Selection

=0

KULIID8

1

modeFRONTIER - Excel Node

modeFRONTIER Solution Development

modeFRONTIER Radiator Entry Temperature

The TRUCK Model

- Given three engine ratings, with 2 operating points (peak power and peak torque) each, the goal was to maximize cooling capacity of a heat exchanger package which would pass all 6 cases.
- For each case, there was a maximum allowable Radiator Exit Temperature, and CAC Entry Temperature, given by the Engine Manufacturer's Specifications. Therefore, one Design Iteration involved 6 KULI runs; at the end of which 6 radiator temperatures and 6 CAC temperatures were calculated. For a design to pass, all 12 calculated temperatures needed to be below the maximum allowable.

Inputs

- **modeFRONTIER** was allowed to modify the height and width of the radiator and charge air cooler, as well as the position of these components.
- Tank blockages were introduced, always with the correct position corresponding to their parent component.
- The input variables were constrained to ensure that all components remained within a predefined envelope.
- Constraints were also placed on the width and height of each component, to prevent searches in parts of design space which would clearly not produce solutions of interest.

The Objectives

• In order to try to maximize the margin by which the 6 cases passed, two 2 quantities, T_{Rtot} and T_{CACtot} were calculated within **modeFRONTIER**:

$$T_{\text{Rtot}} = \sum_{n=1}^{6} (T_{\text{Rnmax}} - T_{\text{Rn}})$$

$$T_{\text{CACtot}} = \sum_{n=1}^{6} (T_{\text{CACnmax}} - T_{\text{CACn}})$$

- where T_{Rnmax} and $T_{CACnmax}$ are the maximum allowable temperatures for radiator and CAC respectively, for case n.
- Two objectives were defined: to maximize each of T_{Rtot} and T_{CACtot}

KULI Model

Optimization Parameters

8 Independent Variables:

Variable	Minimum	Maximum	Step (mm)
Radiator	Y1 _{min}	Y1 _{max}	5
Radiator	Y2 _{min}	Y2 _{max}	5
Radiator	Z1 _{min}	Z1 _{max}	5
Radiator	Z2 _{min}	Z2 _{max}	5
CAC	Y1 _{min}	Y1 _{max}	5
CAC	Y2 _{min}	Y2 _{max}	5
CAC	Z1 _{min}	Z1 _{max}	5
CAC	Z2 _{min}	Z2 _{max}	5

modeFRONTIER Work Flow

modeFRONTIER 3.1.0 (build 2005.01.14 HJS) - Project :TRUCK_NSGA.prj

MODE: EDIT

ESTECO

modeFRONTIER - Input Subsystem

Integration:

File Edit		
661 BEMERKUNG 662 KOMP_POS_X	Latin V OS Dependent Term. V - 'Radiator Tank Blockage' = 150	
663 KUMP_PUS_T 664 KOMP_POS_Z 665 \$ 666 (SYS_KOMP_FW) 667 AKT BEFITE	<pre>= <var format="0.0000L0" name="Rad_blockage_t_t1"></var> = <var format="0.0000E0" name="Rad_Blockage_t_t1"></var></pre>	
668 AKT_HOEHE 669 AKT_TIEFE 670 PARAMETER_1 671 PARAMETER_2	<pre>= <var format="0.0000E0" name="CAC_Height"></var> = 10 = 1 = 1</pre>	
672 PARAMETER_3 673 PARAMETER_4 674 PARAMETER_5 675 OPTIMIERUNG BREITE	= 1 = 1 = 1	
676 OPTIMIERUNG_HOEHE 677 KOMP_KENNUNG 678 BEMERKUNG 679 KOMP_POS_X	= '=====' = 'FW9' = 'CAC Tank Blockage' = 75	and marks the position
680 KOMP_P05_Y 681 KOMP_P05_Z 682 \$	<pre>= <var format="0.0000E0" name="CAC_Blockage_1_Yl"></var> = <var format="0.0000E0" name="CAC_Blockage_1_Zl"></var></pre>	it is to be inserted
684 AKT_BREITE 685 AKT_HOEHE 686 AKT_TIFFE 687 DURCHSTROEMUNG	<pre>= <var format="0.0000E0" name="CAC_Width"></var> = <var format="0.0000E0" name="CAC_Height"></var> = 64 = 'GEG_Y_RICHTG'</pre>	
688 EINTRITT_POS 689 VERSCHMUTZUNGSGRAD 690 OFTINIERUNG_BREITE 691 OPTINIERUNG_HOEHE	= 'RECHTS_OBEN' = 0 = '+Y' = '=Z'	
692 KOMP_KENNUNG 693 EEMERKUNG 694 KOMP_POS_X 695 KOMP_POS_Y 696 KOMP_POS_Z	<pre>= 'LLK1' = '' = 75 = <var format="0.0000E0" name="CAC_Y1"></var> = <var format="0.0000E0" name="CAC_21"></var></pre>	
697 \$	25814	
Row: 518 Col: 33	h faire a	urences
Row: 518 Col: 33 Len: 1 11 IZ CAC_Width 12 IZ CAC_Y1 13 IZ CAC_Y2	User se	elects variable

Integration Excel File Interface

🖸 Micı	osoft Excel - PACCAR_	R_6.xls								BX
🔊 Ei	e <u>E</u> dit <u>V</u> iew Insert F	<u>ormat Tools D</u> ata	Window Help Adobe PDF					Type a question	for help 🔻 🗕 🕇	8 ×
D 🖻	■ 2 3 4 5 . * .	🖁 🖻 • 🍼 🗠 • •	- · · · · · · · · · · · · · · · · · · ·	150% 🔹 🕄 🖕	Arial ▼ 10 ▼ B I U ■ Ξ Ξ 团 \$ % , 1	8 :9 € € ⊞ •	<u>ð</u> • <u>A</u> • ,			
12 12	₹ .	£								
	A	B	С	D	E		F	G	Н	
1	Excel Sheet f	for TRUCK								
2										
		Radiator	CAC Exit	CAC	Directory		File			
3		Entry	Temperature	dP						
4	Case A1:	0	0	0	C:\Work\Frontier\KULI\TRUCK	TRUC	K A1.scs			
5	Case A2:	0	<u> </u>	0	C:\Work\Frontier\KULI\TRUCK	TRUC	K_A2.scs			
6	Case B1:	0	<u></u> o	0	C:\Work\Frontier\KULI\TRUCK	TRUC	K_B1.scs			× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
7	Case B2:	0	0	0	C:\Work\Frontier\KULI\TRUCK	TRUC	K_B2.scs			
8	Case C1:	0	0	0	C:\Work\Frontier\KULI\TRUCK	TRUC	K_C1.scs			
9	Case C2:	0	0	0	C:\Work\Frontier\KULI\TRUCK	TRUC	K_C2.scs			
10										
11										
12				For ea	ch case the Excel file passes					
14			th	e locati	on of the file, and the file nam	ne 🗄				
15					to the VR magro					
16		-								
17			Excel	Excel is also used to extract the 2 temperatures						
18				an	d the dp across the CAC					
19										
20		1								_
21	NA KINA (Charte / C	hash2 /			1,1					× II
• • •	KULL Sneetz / S	neets /								

Integration Running KULI in Batch Mode

Set KULI = Nothing

modeFRONTIER - Output Subsystem

Run Statistics

- Population Size: 32
- Number of Generations: 200
- Total Number of Simulations: 6400 (many repeated designs)
- Algorithm: NSGA-II (Genetic Algorithm)
- Time: Approx 15 hours on DELL Inspiron 8500, 2.4 GHZ

Results – Scatter Chart

Postprocessing - Parallel Charts

• •

Postprocessing – Correlation Matrix

_ 8 ×

. 8 ×

5 sec 🔻

5 sec 🔻

modeFRONTIER 3.1.0 (build 2005.01.14 HJS) - Project :TRUCK_NSGA.prj Edit Project Assessment Window

The Correlation Matrix is extremely useful for determining the extent to which inputs or outputs are correlated. If, for example, we have 8 objectives, and we see that 2 of them are strongly correlated to each other, we can get rid of one, reducing the problem to one of 7 objectives. Similarly, strong correlation between any pair of inputs would allow the elimination of some inputs. **Obviously**, the fewer Objectives and inputs we have, the more

General Remarks

- The engine studied biased heat rejection to the radiator. modeFrontier recognized this and developed a stacked system that balanced the cores to the engine.
- Generally, at the completion of the optimization process, the engineer / designer is presented with several Pareto Frontiers (Trade-Off Curves) one for every set of 2 objectives.
- In this case there was only a single Pareto Frontier (as we only had 2 objectives), and the optimal point was easy to select

General Remarks (contd)

- The choice of one design over another is usually associated with an improvement in at least one of the goals at the expense of at least one of the others. This is the trade-off.
- Once a design has been chosen, a robust design analysis can be performed (using the MORDO module in modeFrontier) to ensure that the performance does not deteriorate rapidly in the case where there are small changes in input parameters, operating conditions, etc.

www.esteco.com

