

Integration of Thermal Management Tools into the Vehicle Development Process with Special Consideration of Aggregate Cooling

Dr.-Ing. Stefan Micko, AUDI AG, I/EK-41

- KULI within the Development Process of Cooling Systems at AUDI
- Running Design Verification supported by KULI
- Actual Applications using the KULI-Engine Model

Variation of Air Intake Size

- Demand: AT-Value for increased engine Power
- > Heat Rejection Forecast using KULI Engine Model or Upsizing Method
- > Oil and Water Temperatures should be considered

Charge Air Cooling – System Modeling

Efficiency

$$T_{s} = \frac{T_{in}}{T_{out} - T_{in}} \left[\left(\frac{p_{out}}{p_{in}} \right)^{\frac{\kappa - 1}{\kappa}} - 1 \right]$$

Charge Air Pressure [bar]

Measured

Charge Air Cooling – Simulation Experiences

Influence of Charge Air Pressure to the Pressure Loss

Charge Air Cooling – Simulation Results

Easy Parameter Studies

Analysis of different Configurations (with or without Bypass)

Engine heat fluxes, HEATSIM engine model

Engine Model

The total heat input as well as the heat flux to oil and coolant depends on the oil and coolant temperatures

- const. engine speed
- const. Coolant temperature (95°C)

Oil temperature

