2006 KULI User Meeting

Methodology for Direct Coupling of KULI with PowerFLOW: Complete Integration of Air-Side Data from CFD

> Raja Sengupta, Ales Alajbegovic (Exa Corporation) Wilko Jansen (Jaguar/Land Rover)

Troy, Michigan

April 7, 2006

Outline

Strategy for 1-way coupling

- Simple Method: Isothermal (cold) PowerFLOW simulation
- Advanced Method: Thermal (hot) PowerFLOW simulation

> Coupling PowerFLOW with KULI

- Process of data exchange
- Example: Land Rover Vmax (operating condition)

> Proposed strategy for 2-way coupling

- Output coolant circuit data from KULI
- Read data into PowerFLOW
- Issues regarding 2-way coupling

> Summary

Coupling with KULI

Inputs to KULI

- Heat exchanger (HX) data from Supplier
 - * HX Geometric details
 - > Height, Width and Depth
 - > Numer of tubes
 - > Tube crosssection
 - Pressure drop characteristics (test data)
 - > Pressure drop vs. massflow
 - Thermal characteristics (test data)
 - > Net heat rejection
 - > Air entry temperature (ambient)
 - > Coolant entry and exit temperatures
- Operating conditions from OEM for each HX
 - Net heat rejections
 - Coolant properties and flow rates

Simple 1-way Coupling with KULI

- > Perform cold flow simulation with PowerFLOW
- > Obtain massflow into the cooling package
 - Massflow through grille
- > Provide this as "Massflow Target" to KULI

Simple 1-way Coupling with KULI

- > KULI calculates air-side properties
 - Simple 1D calculation for air-circuit
 - Can NOT handle recirculation
 - Ad hoc (manual) splitting of airflow through components
 - User defined "air-paths"
 - * Not sophisticated enough to handle most practical underhood flows

Need for Complete Integration of CFD data

> Simple 1-way coupling

- Pressure data from CFD is ignored
- KULI recalculates air-side pressure field
- Air density is calculated based on this
- Creates discrepancies in massflows

> Advanced 1-way coupling

- Disengage air-side calculation in KULI
 - Pressure, Temperature & Velocity fields from PowerFLOW
- KULI solves the coolant circuit only
 - Provides Top Tank Temperature
- Leverage strengths of both KULI & PowerFLOW
 - Utilize thermal calculation in PowerFLOW

Advanced 1-way Coupling with KULI

- > Perform Thermal simulation with PowerFLOW
- > Provide V, T and P fields at front (and back) faces of each HX
- > KULI 7.0 can NOW use Pressure data from CFD

Data exchange with KULI

- > Without reverse flow, only front face data is needed
 - Output data is provided at the back face of HX
- > KULI can NOW use Pressure data from CFD
 - Previous option was to read it in but "ignore" the data

CFD input file	O front and I	back	• front only	🔽 gen	erate output file	
CFD input file	C:\Support\	Test\Komponer	nten/Cfddirekt_testin	put_vorne.TXT		
Column	V	₽ Z	V 1	♥ T © use © ignore	♥ p C use € ignore	
11.5						
Unit	mm	▼ mm	.▼ m/s	⊥ K	▼ N/m [~] 2	<u> </u>
Unit Shift CFD coordinates i Shift CFD coordinates i	n y-direction by n z-direction by	1 2	• m/s mm (;	KULI = y_CFD :_KULI = z_CFD	+ dy) + dz)	
Unit Shift CFD coordinates i Shift CFD coordinates i	n y-direction by n z-direction by	1 2	m/s	KULI = y_CFD KULI = z_CFD	+ dy) + dz)	
Unit Shift CFD coordinates i Shift CFD coordinates i CFD output file	n y-direction by n z-direction by C:\Support\	Test\Komponer	m/s mm (s mm (s mm (s	KULI = y_CFD KULI = z_CFD KULI = z_CFD	<pre> • dy) + dz) </pre>	
Unit Shift CFD coordinates i Shift CFD coordinates i CFD output file Column	n y-direction by n z-direction by C:\Support\	Test\Komponer	m/s mm (j mm (z mm (z nten\CFDTestausga	KULI = y_CFD KULI = z_CFD KULI = z_CFD beHinten.txt	N/m ² + dy) + dz)	<u>ب</u> ۲

Data exchange with KULI

- > When input data for both front and back face of HX is provided:
 - If velocity is positive, entry values are taken from front side
 - If velocity is negative, entry values are taken from back side

CFD input file	front and	back	C front only	🔽 gene	rate output file		
FD input file (front)	C:\Support	\Test\Komponer	nten/Cfddirekt_testi	nput_vorne.TXT			
FD input file (back)	C:\Support	\Test\Komponer	nten/Cfddirekt_testi	nput_hinten.TXT			
Column	V V	I▼ z	V 1	Г Т	₽ P		
				use	C use		
				C ignore	ignore		
Jinit	mm	mm	▼ m/s	▼ K	▼ N/m^2	•	
hift CFD coordinates in y	v-direction by	1	mm	(y_KULI = y_CFD +	⊦dy)		
hift CFD coordinates in a	z-direction by	2	mm	z_KULI = z_CFD +	+ dz)		
FD output file (front)	C:\Support	\Test\Komponer	nten/CFDTestausg	abe.txt			_
FD output file (back)	C:\Support	C:\Support\Test\Komponenten\CFDTestausgabeHinten.txt					
Column	V V	₽ Z	r Q	Г Т	Пр	Γ ς	

Format for CFD data to be imported

- > PowerFLOW distribution now contains a new script gen_pm_plane_kuli (based on exaritool), which
 - Reads in a specification file (pmspec.in)
 - Reads in a fluid file (*.mmh.nc)
 - Generates an ascii output with extension .txt
- > Format of the output file to be imported into KULI:

Y(m)	Z(m)	V(m/s)	Т(К)	P(Pa)
0.620000E-02	0.40000E-02	0.607950E+01	0.296850E+03	0.1013237578E+06
0.620000E-02	0.120000E-01	0.608019E+01	0.296850E+03	0.1013238125E+06
0.620000E-02	0.20000E-01	0.607898E+01	0.296850E+03	0.1013238516E+06
0.620000E-02	0.280000E-01	0.607932E+01	0.296850E+03	0.1013238281E+06
0.620000E-02	0.360000E-01	0.608012E+01	0.296850E+03	0.1013239531E+06
0.620000E-02	0.440000E-01	0.608037E+01	0.296850E+03	0.1013238516E+06
0.620000E-02	0.520000E-01	0.608071E+01	0.296850E+03	0.1013239375E+06
0.620000E-02	0.60000E-01	0.608025E+01	0.296850E+03	0.1013239297E+06
0.620000E-02	0.680000E-01	0.607944E+01	0.296850E+03	0.1013238594E+06
0.620000E-02	0.760000E-01	0.607941E+01	0.296850E+03	0.1013238203E+06

Example: Land Rover – PowerFLOW Setup

Example: Land Rover – PowerFLOW setup

VR7(8mm) - underbody initialized with V=1m/s

Example: Land Rover – PowerFLOW setup

Example: Land Rover – Flow Results

Flow was initialized with uniform temperature field (42.3C = 315.5K)

Example: Land Rover – Flow Results

Condenser produces uniform heating – heating up air entering the Radiator

Example: Land Rover – Flow Results

Velocity field on the Radiator face is fully established by 40,000 timesteps

> Simple 1-way coupling

- Provided 20x20 Velocity field on Radiator face
- Used Standard Resistance Matrix within KULI

🙀 Resistance matrix [L	.R319-P1R11-40k-20	x20-vel. resmat]			
Eile Extras CFD-Data					
Resistance matrix Input data CFD data set KULI Resi KULI CFD file LR319-P1R Comments LR319-P1R Blocks used for CFD Matrix (e.g. Ambient air pressure [hPa]	istance matrix 11-40k-20x20-vel.ctd 11-20x20-vel 1;3;4) 400 1013]	Position of Position y- Position z-t	CFD data field direction [mm] 0 direction [mm] 0	
Ambient temp. [°C] Air humidity [%]	48	-	Max. numt	per of shown values	000
Add/Edit resistance matrix	,		y-coordinate	z-coordinate	Velocity in x-Direction [m/s]
			0.01506	0.0126498	2.03865
Eile			0.01506	0.0379493	3.14315
		Modify KULI CFD file	0.01506	0.0632488	2.69821
Resistance matrix 1			0.01506	0.0885483	2,77259
Identifier			0.01506	0.113848	2.58242
			0.01506	0.139147	2.8142
		Mariland	0.01506	0.164447	3.1514
Туре		Method	0.01506	0.189746	2.91566
use standard resistance matrix		IMSL 🔻	0.01506	0.215046	2.89663
		Class Limit	0.01506	0.240345	3.10973
U use direct CFD interface			0.01506	0.265645	3.02581
use velocity depending resistance matrices			0.01506	0.290945	2.81319
		I	0.01506	0.316244	2.5675
			0.01506	0.341544	3.60487
			0.01506	0.366843	3.93723
Component LR319-P1R11-40k-20x20-vel.resmat 🛄 😂 🚨			0.01506	0.392143	3.96029
			0.01506	0.417442	5.20552

Resistance matrix [LR319-P1R11-40k-20x20	0-vel.resmat]				X
Eile Extras CFD-Data					
2 👂 🖯 🗧 🛛					
Resistance matrix					
Input data CFD data set KULI Resistance matrix					
KULI CFD file LR319-P1R11-40k-20x20-vel.ctd]	Position of	CFD data field		
Comments LR319-P1R11-20x20-vel		Position y-	direction [mm]		
Blocks used for CFD Matrix (e.g. 1;3;4) 400		Position z-	direction (mm)		
Ambient air pressure [hPa] 1013					
Ambient temp. [°C]		Max. numi	per of shown values		
Air humidity [%]			1	000	
Unit of field coordinates				•	
		y-coordinate	z-coordinate	Velocity in x-Direction [m/s]	
		0.01506	0.0126498	2.03865	
		0.01506	0.0379493	3.14315	
	Modify KULI CFD file	0.01506	0.0632488	2.69821	
	.	0.01506	0.0885483	2.77259	
		0.01506	0.113848	2.58242	
		0.01506	0.139147	2.8142	
	Method	0.01506	0.164447	3.1514	_
		0.01506	0.189746	2.91566	
	IMSL .	0.01506	0.215046	2.89663	
	Class Limit	0.01506	0.240345	3.10973	
	Classify X 0	0.01506	0.265645	3.02581	-
		0.01506	0.290945	2.81319	-
		0.01506	0.316244	2.5675	

KULI – Velocity Map

(Driver's Point of View)

PowerFLOW – Velocity Field

Mapping of Velocity field from PowerFLOW to KULI

Advanced 1-way coupling

- Provided 20x20 V,P,T fields on Radiator face
- Used Direct CFD interface

📸 Add/Edit resistance matrix	📸 direct CFD interface [LR319-P1R11-40k-20x20.kuliCfddir]	
Eile	Eile	
Resistance matrix 1		
Identifier ILRM	General data Input data	1
Туре	CFD input file C front and back C front only V generate output file	
use standard resistance matrix use direct CFD interface	CFD input file C:\Exa\TMC\Kuli\LR319\LR319-P1R11-dm4-20x20.bd	
use velocity depending resistance matrices		
Component LR319-P1R11-40k-20x20.kuliCtddir	Unit Im Im Im/s II. K I. Pa II.	
Ok Cancel	Shift CFD coordinates in y-direction by 0 mm (y_KULI = y_CFD + dy) Shift CFD coordinates in z-direction by 0 mm (z_KULI = z_CFD + dz)	
	CFD output file C:\Exa\TMC\Kuli\LR319\Components\LR319-P1R11-40k-20x20-kuli-cfd.bt Column V V Q V T P V Unit m m Wm² K Pa Far	۲ ç Isformed
	shift lower right block corner into origin for output	

PowerFLOW – Temperature Field

PowerFLOW – Static Pressure Field

Additional fields mapped from PowerFLOW to KULI

Example: Land Rover – KULI Results

KULI Output	Simple 1-way coupling (Standard Resistance Matrix)	Advanced 1-way coupling (Direct CFD interface)	Delta
Coolant Entry Temperature (TTT)			0.059 <i>°</i> C
Coolant Exit Temperature			0.059 ℃
Air Massflow			0.049 kg/s
Cooling Air Massflux			0.16 kg/m²/s
Air Entry Temperature			0.59 ℃
Air Exit Temperature			-0.15 <i>°</i> C
Mean Volumetric Flow			-0.17 m³/s
Mean Exit Speed			-0.55 m/s

Proposed 2-Way Coupling with KULI

Issues with 2-way coupling

Heat (Q) distribution can be output from KULI

- Read into PowerFLOW
- Prescribe local heat addition within HX
- Need to develop the interface and methodology

> Platform dependence

- KULI only runs under Windows
- PowerFLOW (SIM) runs under UNIX/Linux

> Data exchange process

- Requires sharing filesystem across mixed OS
- Current process: manual sharing of data

> Coupling process control

- Allow job control commands to work across OS
 - UNIX/Linux to Windows
 - > PowerFLOW sends signal to KULI
 - Windows to UNIX/Linux
 - > KULI sends signal to PowerFLOW

Summary

> Simple 1-way coupling

- Already in use by PowerFLOW client(s)
- > Advanced 1-way coupling now available
 - Script distributed with PowerFLOW
 - KULI now uses Pressure data from PowerFLOW
 - Complete integration of CFD data (P,V,T)
- > 2-way coupling with KULI
 - Poses some technical challenges
 - Need to provide heat (Q) from KULI to PowerFLOW

